Tuesday, July 4, 2023
Saturday, July 1, 2023
How to score above 300 in jamb
Important tip to score 300+ in jamb this year.
Although it is difficult, achieving a score above 300 is not impossible. You can achieve a JAMB score above 300 like other candidates. The 7 recommendations in this post will be useful if you want to perform well on the JAMB this year and score above 300.
Before we begin, keep in mind that your preparation for the exam plays a significant role in determining your results and whether you will ultimately be admitted to pursue your ideal course at that dream university.
Many candidates are unaware of how important their JAMB results are to their prospects of admission. The majority of schools in Nigeria determine their departmental cut off marks by averaging the candidates' results from the UTME and post-UTME. Therefore, if your JAMB score is high—at least 300—you have a good head start.
Let's go over some tips for getting a JAMB 2023 score above 300 together.
1. Start your preparation early
This is the first and most crucial piece of advice that any knowledgeable individual can offer a JAMBite. The UTME and JAMB exams are more complex and technical than your O'level. Millions of applicants are competing for a few number of spaces in higher education institutions, making it a very competitive exam.
The only way to ensure thorough comprehension of the material and flawless recollection is to make a commitment to early preparation. The development is slow. You won't be able to advance your studies much if you don't have adequate time.
Don't wait until the last minute to begin your JAMB preparations. You might exhaust all of your resources only to have JAMB's technical requirements knock you off balance.
2. Study your past questions thpractice
Review your prior tests numerous times. Be careful to become accustomed to all of the queries. JAMB has a history of including similar questions in its exams.
Your main responsibility is to make sure you are aware of their tactics and the JAMB pattern for posing queries. If you wish to achieve a JAMB score of more than 300, remember this crucial advice.
3.Go for CBT practice
4. Take a timer while practice
5. Consider extensive jamb tutorials
Additional factors that can support a JAMB score of 300 or higher
Five proven tips for effective studying
How to study effectively
HOW TO STUDY PROPERLY
There isn't a "one size fits all" way for studying efficiently, but there are techniques you may employ to enhance your recall and long-term memory.
Keep in mind that every person has a unique learning style. It's possible that what works for some pupils won't for you.
Just keep trying until you find the most effective study strategy.
If you are a student at VU, we will support you in realizing your full potential by fostering your self-assurance, academic aptitude, and study techniques. You will acquire crucial university-ready skills with our assistance. Learn how to get to our Learning Hubs both offline and online.
Here are our top recommendations for excellent study techniques.
1. Get prepared
Making the effort to organize yourself will help you attain your learning objectives.
Best study advice:
Purchase a journal and use it to record upcoming assignment due dates.
You must bring all required supplies and equipment to class in order to participate. Packing your bag the night before can help ensure that you are prepared to leave as soon as the sun rises.
2. Stay in class
Skipping class can hinder your ability to learn and accomplish your academic objectives. It leaves huge gaps in both your subject knowledge and your notes.
The Block Model at VU is made to free up more time for work, socializing, and other commitments.
Instead of juggling four courses at once, you will focus on one unit (subject) throughout the course of a four-week "block." Three times a week, three-hour workshops will be the format of your sessions. The remaining time can be used for whatever is most essential to you, such as studying, working, or visiting Stay in class
By paying attention to what your teachers are saying in class and taking notes as necessary, always remember to practice active listening.
3.Take note
4. Ask questions and converse with your teacher.
5. Don't study all at once.
Biology jamb syllable
Biology jamb syllables
A: VARIETY OF ORGANISMS
Toics/Contents
- Living organisms:
- Characteristics
b. Cell structure and functions of cell Components
c. Level of organization
i. Cell e.g. euglena and paramecium,
ii. Tissue, e.g. epithelial tissues and hydra
iii. Organ, e.g. onion bulb
iv. Systems, e.g. reproductive, digestive and excretory
v. Organisms e.g. Chlamydomonas
2. Evolution among the following:
- Monera (prokaryotes), e.g. bacteria and
blue green algae.
b. Protista (protozoans and protophyta),
e.g. Amoeba, Euglena and Paramecium
c. Fungi, e.g. mushroom and Rhizopus.
d. Plantae (plants)
i. Thallophyta (e.g. Spirogyra)
ii. Bryophyta (mosses and liveworts) e.g.
Brachmenium and Merchantia.
iii. Pteridophyta (ferns) e.g. Dryopteris.
iv. Spermatophyta (Gymnospermae and Angiospermae)
– Gymnosperms e.g. Cycads and conifers.
– Angiosperms (monocots, e.g. maize; dicots, e.g. water leaf)
e. Animalia (animals)
i. Invertebrates
– coelenterate (e.g. Hydra)
– Platyhelminthes (flatworms) e.g. Taenia
– Nematoda (roundworms)
– Annelida (e.g. earthworm)
– Arthropoda e.g. mosquito, cockroach, housefly, bee, butterfly
– Mollusca (e.g. snails)
ii. Multicellular animals (vertebrates)
– pisces (cartilaginous and bony fish)
– Amphibia (e.g. toads and frogs)
– Reptilia (e.g. lizards, snakes and turtles)
– Aves (birds)
– Mammalia (mammals)
3.a Structural/functional and behavioural adaptations of organisms.
- adaptive colouration and its functions
c. Behavioural adaptations in social animals
d. Structural adaptations in organisms.
B: FORM AND FUNCTIONS | |
TOPICS/CONTENTS/NOTES |
1. Internal structure of a flowering plant
- Root
ii. Stem
iii. Leaf
b. Internal structure of a mammal
2. Nutrition
- Modes of nutrition
i. Autotrophic
ii. Heterotrophic
b. Types of Nutrition
c. Plant nutrition
i. Photosynthesis
ii. Mineral requirements
(macro and micro-nutrients)
d. Animal nutrition
i. Classes of food substances; carbohydrates, proteins, fats and oils, vitamins, mineral salts and water
ii. Food tests (e.g. starch, reducing sugar, protein, oil, fat etc.
iii. The mammalian tooth (structures, types and functions
iv. Mammalian alimentary canal
v. Nutrition process (ingestion, digestion, absorption,
and assimilation of digested food.
3. Transport
- Need for transportation
b. Materials for transportation.
Excretory products, gases, manufactured food, digested food, nutrient, water and hormones)
c. Channels for transportation
i. Mammalian circulatory system (heart, arteries,
veins, and capillaries)
ii Plant vascular system (phloem and xylem)
d. Media and processes of mechanism for transportation.
4. Respiratory
h
- Respiratory organs and surfaces
b. The mechanism of gaseous exchange in:
i. Plants
ii. Mammals
c. Aerobic respiration
d. Anaerobic respiration
5. Excretion
- Types of excretory structures:
contractile vacuole, flamecell,
nephridium, Malpighian tubule, kidney,
stoma and lenticel.
b. Excretory mechanisms:
i. Kidneys
ii. lungs
ii. skin
c. Excretory products of plants
6. Support and movement
- Tropic, tactic, nastic and sleep
movements in plants
b. supporting tissues in animals
c. Types and functions of the skeleton
i. Exoskeleton
ii. Endoskeleton
iii. Functions of the skeleton in animals
7. Reproduction
- A sexual reproduction
i. Fission as in Paramecium
ii. Budding as in yeast
iii. Natural vegetative propagation
iv. Artificial vegetative propagation.
b. sexual reproduction in flowering plants
i. Floral parts and their functions
ii. Pollination and fertilization
iii. products of sexual reproduction
c. Reproduction in mammals
i. structures and functions of the male and female reproductive organs
ii. Fertilization and development.
(Fusion of gamates)
8. Growth
- meaning of growth
- . Germination of seeds and condition
necessary for germination of seeds.
9. Co-ordination and control
- Nervous coordination:
i. the components, structure and functions
of the central nervous system;
ii. The components and functions of the
peripheral nervous systems;
iii. Mechanism of transmission of impulses;
iv. Reflex action
b. The sense organs
i. skin (tactile)
ii. nose (olfactory)
iii. tongue (taste)
iv. eye (sight)
v. ear (auditory)
c. Hormonal control
i. animal hormonal system
– Pituitary
– thyroid
– parathyroid
– adrenal gland
– pancreas
– gonads
ii. Plant hormones (phytohormones)
d. Homeostasis
i. Body temperature regulation
ii. Salt and water regulation
ECOLOGY TOPICS/CONTENTS/NOTES 1. Factors affecting the distribution of Organisms
- Abiotic
ii. Biotic
2. Symbiotic interactions of plants and animals
(a) Energy flow in the ecosystem: food chains, food webs and trophic levels
(b) Nutrient cycling in nature
i. carbon cycle
ii. water cycle
iii. Nitrogen cycle3. Natural Habitats
(a) Aquatic (e.g. ponds, streams, lakes
seashores and mangrove swamps)
(b) Terrestrial/arboreal (e.g. tree-tops of oil palm, abandoned farmland or a dry grassy (savanna) field, and burrow or hole.4. Local (Nigerian Biomes)
- Tropical rainforest
b. Guinea savanna (southern and northern)
c. Sudan Savanna
d. Desert
e. Highlands of montane forests and grasslands of the Obudu, Jos, Mambiland nationalavanna (southern and northern) - c. Sudan Savanna
d. Desert
e. Highlands of montane forests and grasslands of the Obudu, Jos, Mambilla Plateau.
5. The Ecology of Populations:
(a) Population density and overcrowding.
(b) Adaptation for survival
i. Factors that bring about competition
ii. Intra and inter-specific competition
iii. Relationship between competition and succession.
(c) Factors affecting population sizes:
Biotic (e.g. food, pest, disease, predation, competition, reproductive ability).
ii. Abiotic (e.g. temperature, space, light, rainfall, topography, pressure, pH, etc.
(d) Ecological succession
i. primary succession
ii. secondary succession6. SOIL
- a) (i) characteristics of different types
of soil (sandy, loamy, clayey)
soil structure
ii. porosity, capillarity and humus
content
iii. Components of the soil
i. inorganic
ii. organic
iii. soil organisms
iv. Soil air
v. Soil water
Soil fertility:
i. loss of soil fertility
ii. Renewal and maintenance of soil fertility
7. Humans and Environment
(a) Diseases:
(i) Common and endemic diseases.
ii. Easily transmissible diseases and disease syndrome such as:
– poliomyelitis
– cholera
– tuberculosis
– sexually transmitted disease/syndrome (gonorrhea, syphilis, AIDS, etc.
b. Pollution and its control
(i) sources, types, effects and methods of control.
(ii) Sanitation and sewage
(c) Conservation of Natural Resources
(d) Game reserves andNational parksD: HEREDITY AND VARIATIONS TOPICS/CONTENTS/ I) Variation In Population
- Morphological variations in the physical appearance of individuals.
(i) size (height, weight)
(ii) Colour (skin, eye, hair, coat of animals, scales and feathers.
(iii) Fingerprints
b. Physiological variation
(i) Ability to roll tongue
(ii) Ability to taste
phenylthiocarbamide (PTC)
(iii) Blood groups
c. Application of discontinuous
variation in crime detection,
blood transfusion and
determination of paternity.
2. Heredity
- a) Inheritance of characters in organisms;
i) Heritable and non-heritable characters.
b) Chromosomes – the basis of heredity;
(i) Structure
(ii) Process of transmission of hereditary characters from parents to offspring.
c) Probability in genetics and sex determination.
a) Application of the principles of heredity in:
i) Agriculture
(ii) Medicine
Sex – linked characters e.g. baldness, haemophilia, colour blindness, etc.
E: EVOLUTION TOPICS/CONTENTS/NOTES 1. Theories of evolution
- a) Lamarck’s theory
b) Darwin’s theory
c) organic theory
Evidence of evolution
RECOMMENDED TEXTS
Ndu, F.O. C. Ndu, Abun A. and Aina J.O. (2001) Senior Secondary School Biology:
Books 1 -3, Lagos: LongmanOdunfa, S.A. (2001) Essential of Biology, Ibadan: Heinemann
Ogunniyi M.B. Adebisi A.A. and Okojie J.A. (2000) Biology for Senior Secondary Schools: Books 1 – 3, Macmillan
Ramalingam, S.T. (2005) Modern Biology, SS Science Series. New Edition, AFP
Stan. (2004) Biology for Senior Secondary Schools. Revised Edition, Ibadan: Heinemann
Stone R.H. and Cozens, A.B.C. (1982) Biology for West African Schools. Longman
Usua, E.J. (1997) Handbook of practical Biology 2nd Edition, University Press, Limited
BIOLOGY RECOMMENDED Text for 2019/2020
Ambuna, A. Egunyomi, A. and Osakwe, J. (1990). Comprehensive Certificate Biology for Senior Secondary Schools: University Press Limited
Egunyomi A. Bob – Manuel, Abdullahi B.A. and Oyetola O.A. (1988). Exam Focus: Biology For WASSCE and JME 2nd Edition, University Press Limited
MacQueen J. and Murray J. (1978). Success in Biology, Benin: John Murray
Ndu, F.O. C. Ndu, Abun A. and Aina J.O. (2001). Senior Secondary School Biology: Books 1 -3, Lagos: Longman
Odunfa, S.A. (2001). Essentials of Biology, Ibadan: Heinemann
Oguniyi, M.B. Adebisi A.A. and Okojie J.A. (2000). Biology for Senior Secondary Schools: Books – 3, Macmillan
Ramalingam, S.T. (2005). Modern Biology, SS Science Series. New Edition, AFP
- . Germination of seeds and condition
Friday, June 30, 2023
Physics jamb syllable
1. Measurement & Unit
(a) Length area and volume: Metre rule, Venier calipers Micrometer Screw-guage
(b) Mass:
(i) unit of mass
(ii) use of simple beam balance
(c) Time:
(i) unit of time
(ii) time-measuring devices
(d) Fundamental physical quantities
(e) Derived physical quantities and their units
(i) Combinations of fundamental quantities and determination of their units
(f) Dimensions
(i) definition of dimensions
(ii) simple examples.
(g) Limitations of experimental measurements
(i) accuracy of measuring instruments
(ii) simple estimation of errors.
(iii) significant figures.
(iv) standard form.
2. Scalars and Vectors
(i) definition of scalar and vector quantities
(ii) examples of scalar and vector quantities
(iii) relative velocity
(iv) resolution of vectors into two perpendicular directions including graphical methods of solution.
3. Motion
(a) Types of motion: translational, oscillatory, rotational, spin and random
(b) linear motion
(i) speed, velocity and acceleration
(ii) equations of uniformly accelerated motion
(iii) motion under gravity
(iv) distance-time graph and velocity time graph
(v) instantaneous velocity and acceleration.
(c) Projectiles:
(i) calculation of range, maximum height and time of fight
(ii) applications of projectile motion
(d) Newton’s laws of motion:
(i) inertia, mass and force
(ii) relationship between mass and acceleration
(iii) impulse and momentum
(iv) conservation of linear momentum
(Coefficient of restitution not necessary)
(e) Motion in a circle:
(i) angular velocity and angular acceleration
(ii) centripetal and centrifugal forces.
(iii) applications
(f) Simple Harmonic Motion (S.H.M):
(i) definition and explanation of simple harmonic motion
(ii) examples of systems that execute S.H.M
(iii) period frequency and amplitude of S.H.M
(iv) velocity and acceleration of S.H.M
(v) energy change in S.H.M
4. Gravitational field
(i) Newton’s law of universal gravitation
(ii) gravitational potential
(iii) conservative and non-conservative fields
(iv) acceleration due to gravity [g=GM / R]
(iv) variation of g on the earth’s surface
(v) distinction between mass and weight
(vi) escape velocity
(vii) parking orbit and weightlessness
5. Equilibrium of Forces
(a) equilibrium of a particles:
(i) equilibrium of coplanar forces
(ii) triangles and polygon of forces
(iii) Lami’s theorem
(b) principles of moments
(i) moment of a force
(ii) simple treatment and moment of a couple (torgue)
(iii) applications
(c) conditions for equilibrium of rigid bodies under the action of parallel and non-parallel forces:
(i) resolution and composition of forces in two perpendicular directions,
(ii) resultant and equilibrant
(d) centre of gravity and stability
(i) stable, unstable and neutral equilibra
6. Work Energyapplication
(i) definition of work, energy and power
(ii) forms of energy
(iii) conservation of energy
(iv) qualitative treatment between different forms of energy
(v) interpretation of area under the force distance curve
7. Friction
(i) static and dynamic friction
(ii) coefficient of limiting friction and its determination.
(iii) advantages and disadvantages of friction
(iv) reduction of friction
(v) qualitative treatment of viscosity and terminal viscosity.
(vi) stoke’s law.
8. Simple Machines
(i) definition of machine
(ii) types of machines
(iii) mechanical advantage, velocity ratio and efficiency of machines
9. Elasticity
(i) elastic limit, yield point, breaking point, Hooke’s law and Young’s modulus
(ii) the spring balance as a device for measuring force
(iii) work done in springs and elastic strings
10. application atmospheric Pressure:
(i) definition of atmospheric pressure
(ii) units of pressure (S.I) units
(iii) measurement of pressure
(iv) simple mercury barometer, aneroid barometer and manometer.
(v) variation of pressure with height
(vi) the use of barometer as an altimeter.
(b) Pressure in liquids:
(i) the relationship between pressure, depth and density (P = ρgh)
(ii) transmission of pressure in liquids (Pascal’s Principle)
(iii) application
11. Liquids at Rest
(i) determination of density of solid and liquids
(ii) definition of relative density
(iii) upthrust on a body immersed in a liquid
(iv) Archimede’s principle and law of flotation and applications, e.g. ships and hydrometers.
12. Temperature and Its Measurement
(i) concept of temperature
(ii) thermometric properties
(iii) calibration of thermometers
(iv) temperature scales –Celsius and Kelvin.
(v) types of thermometers
(vi) conversion from one scale of temperature to another
13. Thermal Expansion
(a) Solids:
(i) definition and determination of linear, volume and area expansivities
(ii) effects and applications, e.g. expansion in building strips and railway lines
(iii) relationship between different expansivities
(b) Liquids:
(i) volume expansivity
(ii) real and apparent expansivities
(iii) determination of volume expansivity
(iv) anomalous expansion of water
14. Gas Laws
(i) Boyle’s law (PV = constant)
(ii) Charle’s law ( V/P = constant)
(iii) Pressure law ( P/T = constant )
(iv) absolute zero of temperature
(v) general gas quation ( PV/T = constant )
(vi) ideal gas equation (Pv = nRT)
15. Quantity of Heat
(i) heat as a form of energy
(ii) definition of heat capacity and specific heat capacity of solids and liquids
(iii) determination of heat capacity and specific heat capacity of substances by simple methods e.g method of mixtures and electrical method
16. Change of State
(i) latent heat
(ii) specific latent heats of fusion and vaporization;
(iii) melting, evaporation and boiling
(iv) the influence of pressure and of dissolved substances on boiling and melting points.
(v) application in appliances
17. Vapours
(i) unsaturated and saturated vapours
(ii) relationship between saturated vapour pressure (S.V.P) and boiling
(iii) determination of S.V.P by barometer tube method
(iv) formation of dew, mist, fog, and rain
(v) study of dew point, humidity and relative humidity
(vi) hygrometry; estimation of the humidity of the atmosphere using wet and dry bulb hygrometers.
18. Structure of Matter and Kinetic Theory
(a) Molecular nature of matter
(i) atoms and molecules
(ii) molecular theory: explanation of Brownian motion, diffusion, surface tension, capillarity, adhesion, cohesion and angles of contact
(iii) examples and applications.
(b) Kinetic Theory
(i) assumptions of the kinetic theory
(ii) using the theory to explain the pressure exerted by gas, Boyle’s law, Charles’ law,
melting, boiling, vapourization, change in temperature evaporation, etc.
19. Heat Transfer
(i) conduction, convention and radiation as modes of heat transfer
(ii) temperature gradient, thermal conductivity and heat flux
(iii) effect of the nature of the surface on the energy radiated and absorbed by it.
(iv) the conductivities of common materials.
(v) the thermos flask
(vii) land and sea breeze
20. Waves
(a) Production and Propagation:
(i) wave motion,
(ii) vibrating systems as source of waves
(iii) waves as mode of energy transfer
(iv) distinction between particle motion and wave motion
(v) relationship between frequency, wavelength and wave velocity (V=f λ)
(vi) phase difference
(vii) progressive wave equation e.g y = A sin 2π/λInstruments
(b) Classification:
(i) types of waves; mechanical and electromagnetic waves
(ii) longitudinal and transverse waves
(iii) stationary and progressive waves
(iv) examples of waves from springs, ropes, stretched strings and the ripple tank.
(c) Characteristics / Properties:
(i) reflection, refraction, diffraction and plane Polarization
(ii) superposition of waves e.g interference
21. Propagation of Sound Waves
(i) the necessity for a material medium
(ii) speed of sound in solids, liquids and air;
(iii) reflection of sound; echoes, reverberation and their applications
(iv) disadvantages of echoes and reverberations
22. Characteristics of Sound Waves
(i) noise and musical notes
(ii) quality, pitch, intensity and loudness and their application to musical instruments;
(iii) simple treatment of overtones produced by vibrating strings and their columns
Fo= 1/2L Square root T/M
(iv) acoustic examples of resonance
(v) frequency of a note emitted by air columns in closed and open pipes in relation to their lengths.
23. Light Energy
(a) Source of Light:
(i) natural and artificial source of light
(ii) luminous and non-luminous objects
(b) Propagation of light:
(i) speed, frequency and wavelength of light
(ii) formation of shadows and eclipse
(iii) the pin-hole camera.
24. Reflection of Light at Plane and Curved Surfaces
(i) laws of reflection.
(ii) application of reflection of light
(iii) formation of images by plane, concave and convex mirrors and ray diagrams
(iv) use of the mirror formula
l/F = I/U + I/V
(v) linear magnification
25. Refraction of Light Through
(a) Plane and Curved Surface:
(i) explanation of refraction in terms of velocity of light in the media.
(ii) laws of refraction
(iii) definition of refractive index of a medium
(iv) determination of refractive index of glass and liquid using Snell’s law
(v) real and apparent depth and lateral displacement
(vi) critical angle and total internal reflection
(b) Glass Prism:
(i) use of the minimum deviation formula u=sin A+D/2 / A/2.
(ii) type of lenses
(iii) use of lens formula
l = l + l
f u v
(iv) magnification
26. Optical instrument
(ii) power of a lens
(iii) angular magnification
(iv) near and far points
(v) sight defects and their corrections
27. (a) dispersion of light and colours
(i) dispersion of white light by a triangular prism
(ii) production of pure spectrum
(iii) colour mixing by addition and subtraction
(iv) colour of objects and colour filters
(b) electgro magnetic spectrum
(i) description of sources and uses of various types of radiation.
28. Electrostatics
(i) existence of positive and negative charges in matter
(ii) charging a body by friction, contact and induction
(iii) electroscope
(iv) coulomb’s inverse square law electric field and potential
(v) electric field and potential
(vi) electric discharge and lightning
29. Capacitors
(i) functions of capacitors
(ii) parallel plate capacitors
(iii) capacitance of a capacitors
(iv) the relationship between capacitance, area separation of plates and medium between the plates. C = 3A/d
(v) capacitors in series and parallel
(vi) energy stored in a capacitor
30. Electric Cells
(i) simple voltaic cell and its defects;
(ii) Daniel cell, Leclanche cell (wet and dry)
(iii) lead –acid accumulator and Nickel-Iron (Nife) Lithium lon and Mercury cadmium
(iv) maintenance of cells and batteries (detail treatment of the chemistry of a cell is not required
(v) arrangement of cells
31. Current Electricity
(i) electromagnetic force (emf), potential difference (p.d.), current, internal resistance of a cell and lost Volt
(ii) Ohm’s law
(iii) measurement of resistance
(iv) meter bridge
(v) resistance in series and in parallel and their combination
(vi) the potentiometer method of measuring emf, current and internal resistance of a
cell.
32. Electrical Energy and Power
(i) concepts of electrical energy and power
(ii) commercial unit of electric energy and power
(iii) electric power transmission
(iv) heating effects of electric current.
33. Magnets and Magnetic Fields
(i) natural and artificial magnets
(ii) magnetic properties of soft iron and steel
(iii) methods of making magnets and demagnetization
(iv) concept of magnetic field
(v) magnetic field of a permanent magnet
(vi) magnetic field round a straight current carrying conductor, circular wire and solenoid
(vii) properties of the earth’s magnetic field; north and south poles, magnetic meridian and angle of dip and declination
(viii) flux and flux density
(ix) variation of magnetic field intensity over the earth’s surface
(x) applications: earth’s magnetic field in navigation and mineral exploration.
34. Force on a Current-Carrying Conductor in
a) Magnetic Field:
(i) quantitative treatment of force between two parallel current-carrying conductors
(ii) force on a charge moving in a magnetic field;
(iii) the d. c. motor
(iv) electromagnets
(v) carbon microphone
(vi) moving coil and moving iron instruments
(vii) conversion of galvanometers to ammeters and voltmeter using shunts and multipliers
35. (a) Electromagnetic Induction
(i) Faraday’s laws of electromagnetic induction
(ii) factors affecting induced emf
(iii) Lenz’s law as an illustration of the principle of conservation of energy
(iv) a.c. and d.c generators
(v) transformers
(vi) the induction coil
(b) Inductance:
(i) explanation of inductance
(ii) unit of inductance
(iii) energy stored in an inductor
(iv) application/uses of inductors
(c) Eddy Current:
(i) reduction of eddy current
(ii) applications of eddy current
36. Simple A. C. Circuits
(i) explanation of a.c. current and voltage
(ii) peak and r.m.s. values
(iii) a.c. source connected to a resistor;
(iv) a.c source connected to a capacitor capacitive reactance
(v) a.c source connected to an inductorinductive reactance
(vi) series R-L-C circuits
(vii) vector diagram
(viii) reactance and impedance of alternative quantities
(ix) effective voltage in an R-L-C circuits
(x) resonance and resonance frequency
37. Conduction of Electricity Through
(a) liquids:
(i) electrolytes and non-electrolyte
(ii) concept of electrolysis
(iii) Faraday’s law of electrolysis
(iv) application of electrolysis, e.g electroplating, calibration of ammeter etc.
(b) gases:
(i) discharge through gases (quantitative treatment only)
(ii) application of conduction of electricity through gases
38. Elementary Modern Physics
(i) models of the atom and their limitations
(ii) elementary structure of the atom;
(iii) energy levels and spectra
(iv) thermionic and photoelectric emissions;
(v) Einstein’s equation and stopping potential
(vi) applications of thermionic emissions and photoelectric effects
(vii) simple method of production of x-rays
(viii) properties and applications of alpha, beta and gamma rays
(xiii) half-life and decay constant
(xiv) simple ideas of production of energy by fusion and fission
(xv) binding energy, mass defect and Einsterin’s Energy equation
(xvi) wave-particle paradox (duality of matter)
(xvii) electron diffraction
(xviii) the uncertainty principle
39. Introductory Electronics
(i) distinction between metals, semiconductors and insulators (elementary knowledge of band gap is required)
(ii) intrinsic and extrinsic semi-conductors;
(iii) uses of semiconductors and diodes in rectification and transistors in amplification
(iv) n-type and p-type semi-conductors
(v) elementary knowledge of diodes and transistors
(vi) use of semiconductors and diodes in rectification and transistors in amplification.
Jamb Physics Syllabus Recommended Textbook
- Nelkon, M (1977). Fundamentals of Physics, Great Britain: Hart-Davis
Educational. - Nelkon, M and Parker, (1989). Advanced Level Physics (Sixth Edition),
Heinemann - Okeke, P. N and Anyakoha, M. W (2000). Senior Secondary School Physics,
Lagos: Pacific Printers - Olumuyionwa A. and Ogunkoya O. O (1992). Comprehensive Certificate Physics,
Ibadan: University Press Plc. - Ike, E. E (2006). Essential Principles of Physics, Aba Enic Publishers
- Ike, E. E (2005). Numerical Problems and Solutions in Physics, F = Ma Enic
Publishers, Aba